Sep 17 2013

Ocean acidification, the lesser-known twin of climate change, threatens to scramble marine life on a scale almost too big to fathom.

Seattle Times Sea Change

NORMANBY ISLAND, Papua New Guinea — Katharina Fabricius plunged from a dive boat into the Pacific Ocean of tomorrow.

She kicked through blue water until she spotted a ceramic tile attached to the bottom of a reef.

A year earlier, the ecologist from the Australian Institute of Marine Science had placed this small square near a fissure in the sea floor where gas bubbles up from the earth. She hoped the next generation of baby corals would settle on it and take root.

Fabricius yanked a knife from her ankle holster, unscrewed the plate and pulled it close. Even underwater the problem was clear. Tiles from healthy reefs nearby were covered with budding coral colonies in starbursts of red, yellow, pink and blue. This plate was coated with a filthy film of algae and fringed with hairy sprigs of seaweed.

Instead of a brilliant new coral reef, what sprouted here resembled a slimy lake bottom.

Isolating the cause was easy. Only one thing separated this spot from the lush tropical reefs a few hundred yards away.

Carbon dioxide.

In this volcanic region, pure CO2 escapes naturally through cracks in the ocean floor. The gas bubbles alter the water’s chemistry the same way rising CO2 from cars and power plants is quickly changing the marine world.

In fact, the water chemistry here is exactly what scientists predict most of the seas will be like in 60 to 80 years.

That makes this isolated splash of coral reef a chilling vision of our future oceans.

Watch the introduction video.

Read the complete article, watch the videos and look at the images here.

Ocean acidification Images 1

 

 

Sep 17 2013

Movement of marine life follows speed and direction of climate change

Science Daily

Scientists expect climate change and warmer oceans to push the fish that people rely on for food and income into new territory. Predictions of where and when species will relocate, however, are based on broad expectations about how animals will move and have often not played out in nature. New research based at Princeton University shows that the trick to more precise forecasts is to follow local temperature changes.

The researchers report in the journal Science the first evidence that sea creatures consistently keep pace with “climate velocity,” or the speed and direction in which changes such as ocean temperature move. They compiled 43 years of data related to the movement of 128 million animals from 360 species living around North America, including commercial staples such as lobster, shrimp and cod. They found that 70 percent of shifts in animals’ depth and 74 percent of changes in latitude correlated with regional-scale fluctuations in ocean temperature.

“If we follow the temperature, which is easier to predict, that provides a method to predict where the species will be, too,” said first author Malin Pinsky, a former Princeton postdoctoral researcher in ecology and evolutionary biology who is now an assistant professor of ecology and evolution at Rutgers University.

“Climate changes at different rates and in different directions in different places,” he said. “Animals are basically being exposed to different changes in temperature.”

The researchers compiled survey data collected from 1968 to 2011 by American and Canadian fishery-research centers and government panels. The surveys recorded surface and bottom temperatures, as well as the complete mass of animals in nine areas central to North American fisheries: the Aleutian Islands; the eastern Bering Sea; the Gulf of Alaska; the West Coast from Washington to California; the Gulf Coast from Louisiana to Mexico; the Northeast coast from North Carolina to Maine; the coast of Nova Scotia; the southern Gulf of St. Lawrence; and the Atlantic Ocean east of Newfoundland.

Details of the surveys revealed that sea creatures adhere to a “complex mosaic of local climate velocities,” the researchers reported. On average, changes in temperature for North America moved north a mere 4.5 miles per decade, but in parts of Newfoundland that pace was a speedier 38 miles north per decade. In areas off the U.S. West Coast, temperatures shifted south at 30 miles per decade, while in the Gulf of Mexico velocities varied from 19 miles south to 11 miles north per decade.

Animal movements were just as motley. As a whole, species shifted an average of 5 miles north per decade, but 45 percent of animal specific populations swam south. Cod off Newfoundland moved 37 miles north per decade, while lobster in the northeastern United States went the same direction at 43 miles per decade. On the other hand, pink shrimp, a staple of Gulf Coast fisheries, migrated south 41 miles per decade, the researchers found.

Read the full article here.

Sep 17 2013

New Website Brings to Light State’s Rich Coastal and Ocean Data Inventory

CA Dept of Technology - Ocean Protection Council
SACRAMENTO, Calif. – Today the Ocean Protection Council (OPC) and the California Department of Technology launched the California Coastal Geoportal. The goal of the Coastal Geoportal is to help users learn about coastal and marine environments by facilitating the discovery and distribution of geospatial data layers. The data is accessible through the California Geoportal, the state’s go-to resource for geospatial information.

“California’s wealth of ocean and coastal information is now easily available,” said California’s Secretary for Natural Resources and Ocean Protection Council Chair John Laird. “This will lead to smarter decision-making at all levels of government as we plan for the future of our coastal communities.”

The new Coastal Geoportal provides state agency staff and the public with a user-friendly website for finding high priority coastal and marine datasets, such as aerial photos, marine protected areas, and coastal habitats, with links to the data sources. Users can view the data on a map using the Coastal Viewer, share maps, and overlay multiple data layers to see what is happening on our shoreline and out in our ocean. The Coastal Geoportal also includes a list of tools and resources where one can discover other related data holdings and tools, including the NOAA Sea Level Rise Viewer and California’s ocean observing data. This increased access to datasets will improve the use of scientific information in coastal and ocean resource management decision making.

“Today’s technology brings us many new ways to share information about the ocean and coastal environments; it allows us to collaborate with the public to achieve the goal of protecting our marine ecosystem for the future of California,” said California Lieutenant Governor and Ocean Protection Council Member Gavin Newsom. “The launch of the Coastal Geoportal is a solid step towards embracing this new technology and meeting that goal.”

The Coastal Geoportal was developed by the OPC and the Department of Technology with significant input from the California Coastal and Marine Geospatial Working Group, other state agency staff, and nongovernmental partners. This was done in response to AB 2125 (Ruskin, 2010), which directed the OPC to increase access to scientific information.

Read the full announcement here.

Sep 12 2013

Sam Rauch, NOAA acting administrator for fisheries, testifies about 10 year rebuilding timeline

Seafood News
SEAFOOD.COM NEWS [seafoodnews.com] Sept 12, 2013 – In Congressional testimony on Monday, NOAA Acting Assistant Administrator for Fisheries Sam Rauch responded to the latest NRC report calling for more flexibility in stock rebuilding timelines. A portion of his comments are below:

“We`ve heard concerns from stakeholders that the 10-year rebuilding timeline may be arbitrary and too restrictive.

In response to these concerns and similar concerns expressed by Members of Congress, in 2011 NOAA commissioned the National Academy of Sciences` National Research Council (NRC) to conduct a comprehensive evaluation of success in stock rebuilding and identification of changes made to fisheries management in response to rebuilding requirements. NOAA asked the NRC to study seven topics related to rebuilding to help us and the Councils better construct efficient and effective rebuilding plans.

The NRC rebuilding study was released on September 5, 2013. We are thankful for the in-depth and forward looking review provided by the NRC, and at present we are carefully analyzing the report`s details. The timing of the report fits nicely with our work to revise National Standard 1 Guidelines. Since the guidelines were last updated in 2009, a number of issues regarding the application of the guidelines have been identified by stakeholders and managers, and these issues may warrant revisions. An Advanced Notice of Proposed Rulemaking was published on May 3, 2012 to solicit public input, and several report findings reflect possible revisions to the guidelines similar to those currently being considered by NMFS. At this time, NMFS would like to acknowledge a few aspects of the report:

Read the full article here.

Sep 12 2013

Ray Hilborn on Magnuson: lost yield from fishing too hard is 3%, but from fishing too little is 48%

Seafood News
SEAFOOD.COM NEWS [seafoodnews.com] Sept 12, 2013 – Ray Hilborn, Professor, School of Aquatic and Fishery Sciences University of Washington was one of the people who testified at the House Committee on Natural Resources Magnuson hearing this week. Ray makes the point that we have lost sight of the original goals of Magnuson, which were to achieve jobs and economic benefits from sustainable resources, as well as protecting those resources from over use. Accordingly, he suggests that too rigid an approach to fishery management focusing exclusively on overfishing has distorted the outcome, so that while we lose perhaps 3% of total yield to continued overfishing, we lose as much as 48% of achievable yield by not fishing enough. He calls for a rebalancing of these goals, so that we may have both sustainable fisheries, and the economic benefits that are acheivable from our resources.

Read the full testimony transcript here.

Sep 12 2013

Fukushima Fallout Not Affecting U.S.-Caught Fish

In recent weeks, there has been a significant uptick in news from Fukushima, Japan. Officials from the Japanese government and the Tokyo Electric Power Company, or TEPCO, admitted that radioactive water is still leaking from the nuclear plant crippled by the 2011 earthquake and tsunami.

The new revelations about the amount of water leaking from the plant have caused a stir in the international community and led to additional scrutiny of Pacific Ocean seafood. Last week, South Korea announced it had banned all imports of Japanese seafood from a large area around Fukushima. And Al Jazeera reported that the cost to the region’s fishing industry over the past two years exceeds $3.5 billion.

Now, fears are mounting that the radiation could lead to dangerous contamination levels in seafood from more of the Pacific Basin. Numerous blog posts and articles expressed concern about the potential for higher concentrations of radioactive particles, particularly in highly migratory species such as tuna that may have encountered Fukushima’s isotopes—including highly dangerous and toxic materials such as cesium-137, strontium-90, and iodine-131—on their transoceanic travels.

Amid alarmist outcry and opposing assurances that the radiation levels in fish are no more harmful than what’s found in the average banana, I decided to dig a little deeper, and a few weeks ago, I posted a brief analysis on Climate Progress. After reading the comments on that piece, it became clear I needed to do a bit more homework.

Read the full article here.

A worker using a Geiger counter checks for possible radioactive contamination at Noryangjin Fisheries Wholesale Market in Seoul, South Korea, Friday, September 6, 2013.

Sep 12 2013

Unprecedented Rate and Scale of Ocean Acidification Found in the Arctic

USGS Logo
ST. PETERSBURG, Fla. — Acidification of the Arctic Ocean is occurring faster than projected according to new findings published in the journal PLOS ONE.  The increase in rate is being blamed on rapidly melting sea ice, a process that may have important consequences for health of the Arctic ecosystem.

Ocean acidification is the process by which pH levels of seawater decrease due to greater amounts of carbon dioxide being absorbed by the oceans from the atmosphere.  Currently oceans absorb about one-fourth of the greenhouse gas.  Lower pH levels make water more acidic and lab studies have shown that more acidic water decrease calcification rates in many calcifying organisms, reducing their ability to build shells or skeletons.  These changes, in species ranging from corals to shrimp, have the potential to impact species up and down the food web.

The team of federal and university researchers found that the decline of sea ice in the Arctic summer has important consequences for the surface layer of the Arctic Ocean.  As sea ice cover recedes to record lows, as it did late in the summer of 2012, the seawater beneath is exposed to carbon dioxide, which is the main driver of ocean acidification.

In addition, the freshwater melted from sea ice dilutes the seawater, lowering pH levels and reducing the concentrations of calcium and carbonate, which are the constituents, or building blocks, of the mineral aragonite. Aragonite and other carbonate minerals make up the hard part of many marine micro-organisms’ skeletons and shells. The lowering of calcium and carbonate concentrations may impact the growth of organisms that many species rely on for food.

The new research shows that acidification in surface waters of the Arctic Ocean is rapidly expanding into areas that were previously isolated from contact with the atmosphere due to the former widespread ice cover.

“A remarkable 20 percent of the Canadian Basin has become more corrosive to carbonate minerals in an unprecedented short period of time.  Nowhere on Earth have we documented such large scale, rapid ocean acidification” according to lead researcher and ocean acidification project chief, U.S. Geological Survey oceanographer Lisa Robbins.

Globally, Earth’s ocean surface is becoming acidified due to absorption of man-made carbon dioxide. Ocean acidification models show that with increasing atmospheric carbon dioxide, the Arctic Ocean will have crucially low concentrations of dissolved carbonate minerals, such as aragonite, in the next decade.

Read the full article here.

Sep 10 2013

In the U.S., Good News on Fisheries

Discovery News
Around the world, the status of fish and fisheries is grim indeed. Approximately 85 percent of global fish stocks are either over-exploited, fully-exploited, depleted or recovering from depletion. But rigorous management efforts have resulted in some American fisheries making a comeback.

The new report by the National Research Council assessed 55 fisheries and found 10 that have been rebuilt and five that showed good progress toward rebuilding; only nine continue to experience overfishing. What about the rest? Eleven have not shown strong progress in rebuilding but are expected to rebuild if fishing levels remain reduced and a whopping 20 were not actually over-fished despite having been initially classified as such.

The report comes with a neat interactive online graphic to track the fate of fish populations in different regions over the years. By selecting particular species or geographic areas, users can watch, as for example, yelloweye rockfish becomes steadily overfished, as chinook salmon numbers – especially susceptible to changing environmental conditions – swing wildly back and forth, and the likes of lingcod, George’s Bank haddock, king mackerel and Bering Sea snow crab stage their marches toward recovery.

The report is fairly technical, so for a summary – and an explanation of what it means in practical terms for U.S. fish consumers – Discovery News turned to Chris Dorsett, Director of Ecosystem Conservation Programs for the Ocean Conservancy.

“If you look at a map of the United States and where overfishing is still occurring, it’s almost exclusively an east coast problem,” he points out. “And when I say east coast, I mean Gulf of Mexico as well. Where we have not seen success in terms of species recovering based on management actions, that could be due to climatic factors, which aren’t particularly good for productivity. It could be due to management regimes that aren’t particularly effective. But what exacerbates the issue is that, when you drive a population to an extremely low abundance level, environmental variability plays an even more meaningful role in the recovery of that population, so recovery is a little less predictable.”

As the classic case in point, Dorsett points to cod fisheries off Canada, which collapsed in the 1990s and subsequently saw catches slashed essentially to zero. Despite such drastic measures, neither the fish population nor the fishery has shown signs of recovery.

As the NRC report notes, however, there remains some variation: fishing pressure is still too high for some fish stocks, and others have not rebounded as quickly as plans projected. To a large extent, argues Dorsett, that’s a function of natural variability in fish populations and their environments, as well as differences in the ways fisheries have been managed over the years.

In general, though, the news remains positive, increasingly so, and is reflected in the choices available to consumers.

Read the full article here.

Sep 9 2013

A Fish By Any Other Name

hawaii.gif

As far as I know, no fish has ever swam up to a person and said, “I am a bluefin trevally.” Yet, it is in the very nature of human beings to classify and categorize, and thus we create names for things.

A report published earlier this year by Oceana brought much needed attention to the issue of mislabeled fish in our nation’s restaurants and markets. Public health concerns, economic deception, and a possibility of fishery mismanagement were all discussed as ramifications of the level of mislabeling reported in this study. At the heart of the problem lies one central question — what to call our fish.

It turns out, the names we use for fish are quite complicated, and depending on who we are and where we are, the names we use can be quite different. Fish on a menu are usually described by their English common names. Tuna, swordfish, and sea bass are menu items we are all used to seeing. The problem is, what is tuna? Are there more than one kind of swordfish? Is sea bass a family?

As you’ll see in our latest video below, for fish on the coral reef, common names most often are in two parts, a modifier and a reference to the fish’s family. The modifier sometimes denotes physical appearance: e.g. the teardrop butterflyfish is a type of butterflyfish that has a distinct marking on its side that resembles a teardrop shape. In other instances the modifier is taken from a behavior commonly observed: e.g. the rockmover wrasse is a wrasse species that is often seen picking up and tossing rocks about in its search for prey. The problem with common names is that there is no standardization in their use. One book or snorkeler fish ID card may denote a fish as a rockmover wrasse, while another book from a different author or in a different part of the world may call that same species a dragon wrasse (still an apt name as the juvenile of this species has a markedly different appearance from the adult form and resembles a dragon as it floats about hiding like a piece of algae).

Scientists long ago recognized the problem inherent in the common name system and established an internationally-standardized naming system to alleviate this confusion.

Scientific names take their origin from the work of Swedish botanist, Carl Linnaeus. In 1753, Linnaeus published Species Planturum — the book that set the framework for what has become the modern classification system used by scientists for all living things. In this landmark work, Linnaeus described every plant that was known to him and gave each plant a two-part name consisting of a genus and a species. This system, known as binomial nomenclature, was useful to scientists as it helped organize things into groups of related organisms. Even though Linnaeus’s work long preceded the work of Charles Darwin and the theory of evolution, he was aware of seeming similarities between different plants, and he thought it made sense to group species together based on these shared characteristics.

Read the full article here.

Sep 7 2013

National Research Council study finds rebuilding timelines for fish stocks inflexible, inefficient

Saving Seafood

WASHINGTON (Saving Seafood) September 6, 2013 — A new study from the National Research Council of the National Academies, “Evaluating the Effectiveness of Fish Stock Rebuilding Plans in the United States,” examines the ability of US fisheries management to reduce overfishing. Among other conclusions, the study, currently in pre-publication, finds that current stock rebuilding plans, which are based on eliminating overfishing within a specified time period, are not flexible enough to account for uncertainties in scientific data and environmental factors that are outside the control of fishermen and fisheries managers. It concludes that basing rebuilding on a timeline diminishes consideration for the socioeconomic impacts of the rebuilding plans.

The study was originally requested by Senator Olympia Snowe and Congressman Barney Frank in 2010, who wrote to NOAA asking them to fund the National Research Council’s work. The following are excerpts taken from pages 179 and 181 of the report:

The tradeoff between flexibility and prescriptiveness within the current legal framework and MFSCMA guidelines for rebuilding underlies many of the issues discussed in this chapter. The present approach may not be flexible or adaptive enough in the face of complex ecosystem and fishery dynamics when data and knowledge are limiting. The high degree of prescriptiveness (and concomitant low flexibility) may create incompatibilities between singlespecies rebuilding plans and EBFM. Fixed rules for rebuilding times can result in inefficiencies and discontinuities of harvest-control rules, put unrealistic demands on models and data for stock assessment and forecasting, cause reduction in yield, especially in mixed-stock situations, and de-emphasize socio-economic factors in the formulation of rebuilding plans. The current approach specifies success of individual rebuilding plans in biological terms. It does not address evaluation of the success in socio-economic terms and at broader regional and national scales, and also does not ensure effective flow of information (communication) across regions. We expand on each of these issues below and discuss ways of increasing efficiency without weakening the rebuilding mandate.

Read the full article here.