Posts Tagged Marine Science

Sep 9 2013

A Fish By Any Other Name

hawaii.gif

As far as I know, no fish has ever swam up to a person and said, “I am a bluefin trevally.” Yet, it is in the very nature of human beings to classify and categorize, and thus we create names for things.

A report published earlier this year by Oceana brought much needed attention to the issue of mislabeled fish in our nation’s restaurants and markets. Public health concerns, economic deception, and a possibility of fishery mismanagement were all discussed as ramifications of the level of mislabeling reported in this study. At the heart of the problem lies one central question — what to call our fish.

It turns out, the names we use for fish are quite complicated, and depending on who we are and where we are, the names we use can be quite different. Fish on a menu are usually described by their English common names. Tuna, swordfish, and sea bass are menu items we are all used to seeing. The problem is, what is tuna? Are there more than one kind of swordfish? Is sea bass a family?

As you’ll see in our latest video below, for fish on the coral reef, common names most often are in two parts, a modifier and a reference to the fish’s family. The modifier sometimes denotes physical appearance: e.g. the teardrop butterflyfish is a type of butterflyfish that has a distinct marking on its side that resembles a teardrop shape. In other instances the modifier is taken from a behavior commonly observed: e.g. the rockmover wrasse is a wrasse species that is often seen picking up and tossing rocks about in its search for prey. The problem with common names is that there is no standardization in their use. One book or snorkeler fish ID card may denote a fish as a rockmover wrasse, while another book from a different author or in a different part of the world may call that same species a dragon wrasse (still an apt name as the juvenile of this species has a markedly different appearance from the adult form and resembles a dragon as it floats about hiding like a piece of algae).

Scientists long ago recognized the problem inherent in the common name system and established an internationally-standardized naming system to alleviate this confusion.

Scientific names take their origin from the work of Swedish botanist, Carl Linnaeus. In 1753, Linnaeus published Species Planturum — the book that set the framework for what has become the modern classification system used by scientists for all living things. In this landmark work, Linnaeus described every plant that was known to him and gave each plant a two-part name consisting of a genus and a species. This system, known as binomial nomenclature, was useful to scientists as it helped organize things into groups of related organisms. Even though Linnaeus’s work long preceded the work of Charles Darwin and the theory of evolution, he was aware of seeming similarities between different plants, and he thought it made sense to group species together based on these shared characteristics.

Read the full article here.

Oct 12 2012

Is Fish Poop Critical To The Ocean?

Professor Deborah Steinberg of the Virginia Institute of Marine Science (VIMS) has dedicated her professional life to investigating crustaceans and their role in the “biological pump,” which is the process by which marine life transports carbon dioxide from the atmosphere and ocean’s surface to the deep sea. This cycle removes the carbon to a depth where it contributes nothing to global warming.

In a new study published in Tuesday’s issue of Scientific Reports, professor Steinberg partnered with Dr. Grace Saba of Rutgers
University and retrained her focus from crustaceans to small forage fish in order to gain an understanding of their role in this carbon removal process.

The research pair collected their data off the coast of southern California on an exploratory expedition aboard the research vessel Point Sur. Building on Steinberg’s knowledge of copepods and other small, drifting marine animals, gleaned from two decades of research, the team wanted to explore whether forage fish like crustaceans played a discernible role in the biological pump through their consumption of photosynthetic surface algae and subsequent release “fecal pellets”.
Read full story here.