Posts Tagged climate change

May 14 2019

These Days, It’s Not About the Polar Bears

Polar bears feeding on garbage in Belushya Guba, on the Novaya Zemlya archipelago in northern Russia. Shrinking habitats has forced more bears to wander into town for food. Alexander Grir/Agence France-Presse — Getty Images

 

By Benjamin Ryan  May 12, 2019

Climate science has struggled mightily with a messaging problem.

The well-worn tactic of hitting people over the head with scary climate change facts has proved inadequate at changing behavior or policies in ways big enough to alter the course of global warming.

While Europe has made some headway, the largest obstacles to change remain in the United States, which has historically been responsible for more emissions than any other country. And perhaps most important, climate change denial has secured a perch in the Trump administration and across the Republican Party.

Enter the fast-growing academic field of climate change communication. Across a swath of mostly Western nations, social scientists in fields like psychology, political science, sociology and communications studies have produced an expansive volume of peer-reviewed papers — more than 1,000 annually since 2014 — in an effort to cultivate more effective methods for getting the global warming message across and inspiring action.

While recent polls have shown an increase in the percentage of people who describe themselves as worried about climate change, experts say not enough people have been motivated to act.  “The main reason people reject the science of climate change is because they reject what they perceive to be the solutions: total government control, loss of personal liberties, destruction of the economy,” said Katharine Hayhoe, director of the Climate Science Center at Texas Tech University.  “But ironically, what motivates people to care and to act is an awareness of the genuine solutions: a new clean-energy future, improving our standard of living, and building local jobs and the local economy.”

Schoolchildren taking part in a student climate protest in London in March. Chris J Ratcliffe/Getty Images

Social-science investigators have found that the most effective tools for engaging the public in the subject of climate change are those that appeal to core human tendencies. For example, people tend to focus on personal and local problems happening now, which means talk of the last remaining polar bears stranded on shrinking icebergs, far from most people, is out.

The best climate-related appeals are not a collection of statistics, but those that target people’s affinity for compelling stories. They also work best if they avoid fear-based messaging (which can cause a head-in-the-sand effect) and provide a sense that individuals can affect the environment in a personal and positive way — by updating to energy-efficient appliances, for example, or eating less meat, given meat production’s heavy carbon footprint.

But these efforts at persuasion are up against a well-financed opposition.  In the United States from 2000 to 2016, major carbon-emitting industries spent more than $1.35 billion lobbying members of Congress on climate change legislation. They outspent environmental groups and renewable energy companies by 10 to 1, according to a paper last year in the journal Climate Change by Robert J. Brulle, an environmental sociologist at Drexel University in Philadelphia.

A 2015 paper by Bruce Tranter, a sociologist at the University of Tasmania, analyzed 14 Western nations and identified an association between a country’s per capita carbon footprint and the prevalence of climate science skepticism among its citizens.  And in a recent study published in Nature Climate Change, Matthew J. Hornsey, a social psychologist at the University of Queensland, found that nations that had the strongest relationship between political conservatism and climate science skepticism tended to be those with economies more highly dependent on the fossil fuel industry, including the United States, Australia, Canada and Brazil.

At the vanguard of the social-science-based response to such doubt is a pair of centers for climate change communications research at George Mason University and Yale University.

An iceberg stranded near the village of Innaarsuit, in northwestern Greenland, in July. Karl Petersen/EPA, via Shutterstock

These research hubs just released new polling data indicating that 96 percent of liberal Democrats and 32 percent of conservative Republicans support the Green New Deal — a public-opinion gap that widened by 28 percentage points between December and April as awareness about the proposed legislation grew.

In 2009, the two climate labs produced the highly regarded “Six Americas” report, which identified six different groups of Americans who represented the range of public opinion on climate change.

On one end of the spectrum are the “alarmed,” who are the most certain, and most concerned, about human-driven global warming. They’re also the most motivated to act to protect the climate. On the other end of the spectrum are the “dismissives,” who, as their name suggests, are least likely to accept or care about climate change. Between the two polarities are “concerned,” “cautious,” “disengaged” and “doubtful.”   The report has been updated repeatedly since its release and is often used by climate communication researchers to tailor their efforts to each demographic.

One such operation is the nonprofit Climate Outreach, based in Oxford, England. It recently issued a handbook that uses social science research to help climate scientists become better public champions of their own work.  Climate Outreach has also tapped into research that has identified especially effective visual techniques for communicating about climate change.

The Swedish climate activist Greta Thunberg, 16, during the World Economic Forum annual meeting in Davos, Switzerland, this January. Arnd Wiegmann/Reuters

For example, authentic photos of people actively engaged in global-warming mitigation — such as community members installing solar panels on a roof — are far more resonant than, say, images of politicians at the lectern of a climate conference. So Climate Outreach started Climate Visuals, an open library of research-tested, impactful images.

Major environmental organizations such as Greenpeace and the Sierra Club are also looking to social science to inform how they communicate about climate change, including their choice of imagery, as are federal agencies such as the National Aeronautics and SpaceAdministration (NASA) and the National Oceanic and Atmospheric Administration(NOAA), according to the agencies’ representatives.

Edward W. Maibach, director of George Mason University’s Center for Climate Change Communication, has recruited an ever-expanding army to speak about climate science to the masses. His research revealed that the public puts particularly high trust in local TV weathercasters and health care providers as sources about climate science. So over the past decade, Dr. Maibach’s team enlisted 625 on-air meteorologists to give newscasts that help viewers connect the dots between climate change and hometown weather.

Another member of the George Mason team, John Cook, is one of various global academics working with a teaching method known as “inoculation,” which is a preventive strategy grounded in the finding that it can be very difficult to extract misinformation once it has lodged in the brain.

Dr. Cook has designed a high school curriculum as well as a popular online course that presents students first with facts and then a myth about climate change; the students are then asked to resolve the conflict.  In Europe, Sander van der Linden, a social psychologist at the University of Cambridge, codesigned an inoculation-based online game with doctoral researcher Jon Roozenbeek.

The game was designed to help its hundreds of thousands of players become better consumers of climate-related information.  “We’re trying,” Dr. van der Linden said, “to help people help themselves and navigate this post-truth environment.”


A version of this article appears in print on May 12, 2019, on Page A11 in The International New York Times. Order Reprints

Original post:

https://www.nytimes.com/2019/05/12/climate/climate-solutions-polar-bears.html?action=click&module=MoreInSection&pgtype=Article&region=Footer&contentCollection=Climate%20and%20Environment

Oct 4 2018

Climate scientists are struggling to find the right words for very bad news

A much-awaited report from the U.N.’s top climate science panel will show an enormous gap between where we are and where we need to be to prevent dangerous levels of warming.

In Incheon, South Korea, this week, representatives of over 130 countries and about 50 scientists have packed into a large conference center going over every line of an all-important report: What chance does the planet have of keeping climate change to a moderate, controllable level?

When they can’t agree, they form “contact groups” outside the hall, trying to strike an agreement and move the process along. They are trying to reach consensus on what it would mean — and what it would take — to limit the warming of the planet to just 1.5 degrees Celsius, or 2.7 degrees Fahrenheit, when 1 degree Celsius has already occurred and greenhouse gas emissions remain at record highs.

“It’s the biggest peer-review exercise there is,” said Jonathan Lynn, head of communications for the United Nations’ Intergovernmental Panel on Climate Change. “It involves hundreds or even thousands of people looking at it.”

Delegates and experts attend the opening ceremony of the 48th session of the Intergovernmental Panel on Climate Change in Incheon, South Korea, on Oct. 1, 2018. (Jung Yeon-je/AFP/Getty Images) (Jung Yeon-Je/AFP/Getty Images)

The IPCC, the world’s definitive scientific body when it comes to climate change, was awarded the Nobel Peace Prize a decade ago and has been given what may rank as its hardest task yet.

It must not only tell governments what we know about climate change — but how close they have brought us to the edge. And by implication, how much those governments are failing to live up to their goals for the planet, set in the 2015 Paris climate agreement.

1.5 degrees is the most stringent and ambitious goal in that agreement, originally put there at the behest of small island nations and other highly vulnerable countries. But it is increasingly being regarded by all as a key guardrail, as severe climate change effects have been felt in just the past five years — raising concerns about what a little bit more warming would bring.

“Half a degree doesn’t sound like much til you put it in the right context,” said Durwood Zaelke, president of the Institute for Governance and Sustainable Development. “It’s 50 percent more than we have now.”

The idea of letting warming approach 2 degrees Celsius increasingly seems disastrous in this context.

Parts of the planet, like the Arctic, have already warmed beyond 1.5 degrees and are seeing alarming changes. Antarctica and Greenland, containing many feet of sea-level rise, are wobbling. Major die-offs have hit coral reefs around the globe, suggesting an irreplaceable planetary feature could soon be lost.

It is universally recognized that the pledges made in Paris would lead to a warming far beyond 1.5 degrees — more like 2.5 or 3 degrees Celsius, or even more. And that was before the United States, the world’s second-largest emitter, decided to try to back out.

“The pledges countries made during the Paris climate accord don’t get us anywhere close to what we have to do,” said Drew Shindell, a climate expert at Duke University and one of the authors of the IPCC report. “They haven’t really followed through with actions to reduce their emissions in any way commensurate with what they profess to be aiming for.”

The new 1.5 C report will feed into a process called the “Talanoa Dialogue,” in which parties to the Paris agreement begin to consider the large gap between what they say they want to achieve and what they are actually doing. The dialogue will unfold in December at an annual United Nations climate meeting in Katowice, Poland.

But it is unclear what concrete commitments may result.

At issue is what scientists call the ‘carbon budget’: Because carbon dioxide lives in the atmosphere for so long, there’s only a limited amount that can be emitted before it becomes impossible to avoid a given temperature, like 1.5 degrees Celsius. And since the world emits about 41 billion tons of carbon dioxide per year, if the remaining budget is 410 billion tons (for example), then scientists can say we have 10 years until the budget is gone and 1.5 C is locked in.

Unless emissions start to decline — which gives more time. This is why scenarios for holding warming to 1.5 degrees C require rapid and deep changes to how we get energy.

The window may now be as narrow as around 15 years of current emissions, but since we don’t know for sure, according to the researchers, that really depends on how much of a margin of error we’re willing to give ourselves.

And if we can’t cut other gases — such as methane — or if the Arctic permafrost starts emitting large volumes of additional gases, then the budget gets even narrower.

“It would be an enormous challenge to keep warming below a threshold” of 1.5 degrees Celsius, said Shindell, bluntly. “This would be a really enormous lift.”

So enormous, he said, that it would require a monumental shift toward decarbonization. By 2030 — barely a decade away — the world’s emissions would need to drop by about 40 percent. By the middle of the century, societies would need to have zero net emissions. What might that look like? In part, it would include things such as no more gas-powered vehicles, a phaseout of coal-fired power plants and airplanes running on biofuels, he said.

“It’s a drastic change,” he said. “These are huge, huge shifts … This would really be an unprecedented rate and magnitude of change.”

And that’s just the point — 1.5 degrees is still possible, but only if the world goes through a staggering transformation.

An early draft (leaked and published by the website Climate Home News) suggests that future scenarios of a 1.5 C warming limit would require the massive deployment of technologies to remove carbon dioxide from the air and bury it below the ground. Such technologies do not exist at anything close to the scale that would be required.

“There are now very small number of pathways [to 1.5C] that don’t involve carbon removal,” said Jim Skea, chair of the IPCC’s Working Group III and a professor at Imperial College London.

It’s not clear how scientists can best give the world’s governments this message — or to what extent governments are up for hearing it.

An early leaked draft of the report said there was a “very high risk” that the world would warm more than 1.5 degrees. But a later draft, also leaked to Climate Home News, appeared to back off, instead saying that “there is no simple answer to the question of whether it is feasible to limit warming to 1.5 C . . . feasibility has multiple dimensions that need to be considered simultaneously and systematically.”

None of this language is final. That’s what this week in Incheon — intended to get the report ready for an official release on Monday — is all about.

“I think many people would be happy if we were further along than we are,” the IPCC’s Lynn said Wednesday morning in Incheon. “But in all the approval sessions that I’ve seen, I’ve seen five of them now, that has always been the case. It sort of gets there in the end.”

Jun 3 2018

Marine heatwaves are getting hotter, lasting longer and doing more damage

Marine heatwaves occur everywhere in the ocean. Credit: Eric Oliver/Dalhousie University

On land, heatwaves can be deadly for humans and wildlife and can devastate crops and forests.

Unusually warm periods can also occur in the ocean. These can last for weeks or months, killing off kelp forests and corals, and producing other significant impacts on marine ecosystems, fishing and aquaculture industries.

Yet until recently, the formation, distribution and frequency of marine heatwaves had received little research attention.

Long-term change

Climate change is warming ocean waters and causing shifts in the distribution and abundance of seaweeds, corals, fish and other marine species. For example, tropical fish species are now commonly found in Sydney Harbour.

But these changes in ocean temperatures are not steady or even, and scientists have lacked the tools to define, synthesize and understand the global patterns of marine heatwaves and their biological impacts.

At a meeting in early 2015, we convened a group of scientists with expertise in atmospheric climatology, oceanography and ecology to form a marine heatwaves working group to develop a definition for the phenomenon: A prolonged period of unusually warm water at a particular location for that time of the year. Importantly, marine heatwaves can occur at any time of the year, summer or winter.

With the definition in hand, we were finally able to analyze historical data to determine patterns in their occurrence.

Analysis of marine heatwave trends

Over the past century, marine heatwaves have become longer and more frequent around the world. The number of marine heatwave days increased by 54 per cent from 1925 to 2016, with an accelerating trend since 1982.

We collated more than 100 years of sea surface temperature data around the world from ship-based measurements, shore station records and satellite observations, and looked for changes in how often marine heatwaves occurred and how long they lasted.

We found that from 1925 to 1954 and 1987 to 2016, the frequency of heatwaves increased 34 per cent and their duration grew by 17 per cent.

These long-term trends can be explained by ongoing increases in ocean temperatures. Given the likelihood of continued ocean surface warming throughout the 21st century, we can expect to see more marine heatwaves globally in the future, with implications for marine biodiversity.

‘The Blob’ effect

Numbers and statistics are informative, but here’s what that means underwater.

 

Yearly count of marine heatwave days from 1900 to 2016, as a global average. Credit: Eric Oliver/Dalhousie University

A marine ecosystem that had 30 days of extreme heat in the early 20th century might now experience 45 days of extreme heat. That extra exposure can have detrimental effects on the health of the ecosystem and the economic benefits, such as fisheries and aquaculture, derived from it.

A number of recent marine heatwaves have done just that.

In 2011, a marine heatwave off western Australia killed off a kelp forest and replaced it with turf seaweed. The ecosystem shift remained even after water temperatures returned to normal, signalling a long-lasting or maybe even permanent change.

That same event led to widespread loss of seagrass meadows from the iconic Shark Bay area, with consequences for biodiversity including increased bacterial blooms, declines in blue crabs, scallops and the health of green turtles, and reductions in the long-term carbon storage of these important habitats.

Similarly, a marine heatwave in the Gulf of Maine disrupted the lucrative lobster fishery in 2012. The warm water in late spring allowed lobsters to move inshore earlier in the year than usual, which led to early landings, and an unexpected and significant price drop.

More recently, a persistent area of warm water in the North Pacific, nicknamed “The Blob”, stayed put for years (2014-2016), and caused fishery closures, mass strandings of marine mammals and harmful algal bloom outbreaks along the coast. It even changed large-scale weather patterns in the Pacific Northwest.

As global ocean temperatures continue to rise and marine heatwaves become more widespread, the marine ecosystems many rely upon for food, livelihoods and recreation will become increasingly less stable and predictable.

The climate change link

Anthropogenic, that is human-caused, climate change is linked to some of these recent marine heatwaves.

For example, human emissions of greenhouse gases made the 2016 marine heatwave in tropical Australia, which led to massive bleaching of the Great Barrier Reef, 53 times more likely to occur.

Even more dramatically, the 2015-16 marine heatwave in the Tasman Sea that persisted for more than eight months and disrupted Tasmanian fisheries and aquaculture industries was over 300 times more likely, thanks to anthropogenic climate change.

For scientists, the next step is to quantify future changes under different warming scenarios. How much more often will they occur? How much warmer will they be? And how much longer will they last?

Ultimately, scientists should develop forecasts for policy makers, managers and industry that could predict the future impacts of marine heatwaves for weeks or months ahead. Having that information would help fishery managers know when to open or close a fishery, aquaculture businesses to plan harvest dates and conservation managers to implement additional monitoring efforts.

Forecasts can help manage the risks, but in the end, we still need urgent action to curb greenhouse gas emissions and limit global warming. If not, marine ecosystems are set for an ever-increasing hammering from extreme ocean heat.

More information on this and related studies can be found on www.marineheatwaves.org.

Apr 25 2016

Ocean souring on climate change

climate

“This upwelling is both a blessing and a curse,” Chan said. “The upwelling injects nutrients that make our ocean so productive. That’s why Steinbeck wrote ‘Cannery Row.’ We live in a very special ocean. But the curse is that this upwelling creates low oxygen and low pH. So we’re much closer to any tipping points that could push us past a threshold.”

Although the causes and effects of ocean acidification and low oxygen are global, the panel found hopeful news about the potential to deal with it locally.

Seagrass beds and kelp forests are more productive than tropical forests, capturing more carbon than other systems on the planet. By restoring marine vegetation, scientists hope to raise pH and oxygen levels in key areas.

Curbing marine pollution can also improve ocean chemistry, scientists said. Runoff from farms and lawns, such as nitrogen and phosphorus, feed algal blooms that dump carbon and deplete oxygen from local waters. Cutting back on those pollutants can “put off a potential evil hour when carbon dioxide are so high” that they cause irreparable damage to marine life, Dickson said.

Efforts to battle ocean acidification and low oxygen on the West Coast will be test cases for dealing with the problem elsewhere, scientists said

“The West Coast will be a harbinger for the types of ocean acidification impacts that will be widely felt across coastal North America in the coming decades,” the report states.

Despite the gloomy news, Chan said he’s hopeful that a solution is at hand, noting that bills pending in the California Legislature — Assembly Bill 2139 and Senate Bill 1363 — would study ocean acidity and promote eelgrass restoration.

“I’m leaving with an optimistic note, which I tend not to as a scientist, but I think the people who make decisions get it, and are ready to do something,” he said.


Read the original post: http://www.sandiegouniontribune.com/

Feb 23 2016

Seas Are Rising at Fastest Rate in Last 28 Centuries

 Juan Carlos Sanchez paddled a kayak with his shoes on a flooded street in Miami Beach last year. Credit Lynne Sladky/Associated Press



The worsening of tidal flooding in American coastal communities is largely a consequence of greenhouse gases from human activity, and the problem will grow far worse in coming decades, scientists reported Monday.

Those emissions, primarily from the burning of fossil fuels, are causing the ocean to rise at the fastest rate since at least the founding of ancient Rome, the scientists said. They added that in the absence of human emissions, the ocean surface would be rising less rapidly and might even be falling.

The increasingly routine tidal flooding is making life miserable in places like Miami Beach; Charleston, S.C.; and Norfolk, Va., even on sunny days.

Though these types of floods often produce only a foot or two of standing saltwater, they are straining life in many towns by killing lawns and trees, blocking neighborhood streets and clogging storm drains, polluting supplies of freshwater and sometimes stranding entire island communities for hours by overtopping the roads that tie them to the mainland.

Such events are just an early harbinger of the coming damage, the new research suggests.

“I think we need a new way to think about most coastal flooding,” said Benjamin H. Strauss, the primary author of one of two related studies released on Monday. “It’s not the tide. It’s not the wind. It’s us. That’s true for most of the coastal floods we now experience.”

In the second study, scientists reconstructed the level of the sea over time and confirmed that it is most likely rising faster than at any point in 28 centuries, with the rate of increase growing sharply over the past century — largely, they found, because of the warming that scientists have said is almost certainly caused by human emissions.

They also confirmed previous forecasts that if emissions were to continue at a high rate over the next few decades, the ocean could rise as much as three or four feet by 2100.

Experts say the situation would then grow far worse in the 22nd century and beyond, likely requiring the abandonment of many coastal cities.

The findings are yet another indication that the stable climate in which human civilization has flourished for thousands of years, with a largely predictable ocean permitting the growth of great coastal cities, is coming to an end.

“I think we can definitely be confident that sea-level rise is going to continue to accelerate if there’s further warming, which inevitably there will be,” said Stefan Rahmstorf, a professor of ocean physics at the Potsdam Institute for Climate Impact Research, in Germany, and co-author of one of the papers, published online Monday by an American journal, Proceedings of the National Academy of Sciences.

In a report issued to accompany that scientific paper, a climate research and communications organization in Princeton, N.J., Climate Central, used the new findings to calculate that roughly three-quarters of the tidal flood days now occurring in towns along the East Coast would not be happening in the absence of the rise in the sea level caused by human emissions.

More Reporting on Climate Change

The lead author of that report, Dr. Strauss, said the same was likely true on a global scale, in any coastal community that has had an increase of saltwater flooding in recent decades.

The rise in the sea level contributes only in a limited degree to the huge, disastrous storm surges accompanying hurricanes like Katrina and Sandy. Proportionally, it has a bigger effect on the nuisance floods that can accompany what are known as king tides.

The change in frequency of those tides is striking. For instance, in the decade from 1955 to 1964 at Annapolis, Md., an instrument called a tide gauge measured 32 days of flooding; in the decade from 2005 to 2014, that jumped to 394 days.

Flood days in Charleston jumped from 34 in the earlier decade to 219 in the more recent, and in Key West, Fla., the figure jumped from no flood days in the earlier decade to 32 in the more recent.

A motorist driving through seawater in Charleston, S.C., last year. In the decade from 1955 to 1964, Charleston registered 34 days with flooding; in the decade from 2005 to 2014, the number jumped to 219. Credit Stephen B. Morton/Associated Press

The new research was led by Robert E. Kopp, an earth scientist at Rutgers University who has won respect from his colleagues by bringing elaborate statistical techniques to bear on longstanding problems, like understanding the history of the global sea level.

Based on extensive geological evidence, scientists already knew that the sea level rose drastically at the end of the last ice age, by almost 400 feet, causing shorelines to retreat up to a hundred miles in places. They also knew that the sea level had basically stabilized, like the rest of the climate, over the past several thousand years, the period when human civilization arose.

But there were small variations of climate and sea level over that period, and the new paper is the most exhaustive attempt yet to clarify them.

The paper shows the ocean to be extremely sensitive to small fluctuations in the Earth’s temperature. The researchers found that when the average global temperature fell by a third of a degree Fahrenheit in the Middle Ages, for instance, the surface of the ocean dropped by about three inches in 400 years. When the climate warmed slightly, that trend reversed.

“Physics tells us that sea-level change and temperature change should go hand-in-hand,” Dr. Kopp said. “This new geological record confirms it.”

In the 19th century, as the Industrial Revolution took hold, the ocean began to rise briskly, climbing about eight inches since 1880. That sounds small, but it has caused extensive erosion worldwide, costing billions.

Due largely to human emissions, global temperatures have jumped about 1.8 degrees Fahrenheit since the 19th century. The sea is rising at what appears to be an accelerating pace, lately reaching a rate of about a foot per century.

One of the authors of the new paper, Dr. Rahmstorf, had previously published estimates suggesting the sea could rise as much as five or six feet by 2100. But with the improved calculations from the new paper, his latest upper estimate is three to four feet.

That means Dr. Rahmstorf’s forecast is now more consistent with calculations issued in 2013 by the Intergovernmental Panel on Climate Change, a United Nations body that periodically reviews and summarizes climate research. That body found that continued high emissions might produce a rise in the sea of 1.7 to 3.2 feet over the 21st century.

In an interview, Dr. Rahmstorf said the rise would eventually reach five feet and far more — the only question was how long it would take. Scientists say the recent climate agreement negotiated in Paris is not remotely ambitious enough to forestall a significant melting of Greenland and Antarctica, though if fully implemented, it may slow the pace somewhat.

“Ice simply melts faster when the temperatures get higher,” Dr. Rahmstorf said. “That’s just basic physics.”

How Much Warmer Was Your City in 2015?


Read the original post: http://www.nytimes.com/

Dec 17 2015

Fish Stocks Are Declining Worldwide, And Climate Change Is on the Hook

A fisherman shovels grey sole, a type of flounder, out of the hold of a ship at the Portland Fish Pier in Maine, September 2015. New research finds the ability of fish populations to reproduce and replenish themselves is declining across the globe. The worst news comes from the North Atlantic, where most species are declining. (Gregory Rec/Portland Press Herald via Getty Images)

For anyone paying attention, it’s no secret there’s a lot of weird stuff going on in the oceans right now. We’ve got a monster El Niño looming in the Pacific. Ocean acidification is prompting handwringing among oyster lovers. Migrating fish populations have caused tensions between countries over fishing rights. And fishermen say they’re seeing unusual patterns in fish stocks they haven’t seen before.

Researchers now have more grim news to add to the mix. An analysis published Monday in the Proceedings of the National Academy of Sciences finds that the ability of fish populations to reproduce and replenish themselves is declining across the globe.

“This, as far as we know, is the first global-scale study that documents the actual productivity of fish stocks is in decline,” says lead author Gregory L. Britten, a doctoral student at the University of California, Irvine.

Britten and some fellow researchers looked at data from a global database of 262 commercial fish stocks in dozens of large marine ecosystems across the globe. They say they’ve identified a pattern of decline in juvenile fish (young fish that have not yet reached reproductive age) that is closely tied to a decline in the amount of phytoplankton, or microalgae, in the water.

“We think it is a lack of food availability for these small fish,” says Britten. “When fish are young, their primary food is phytoplankton and microscopic animals. If they don’t find food in a matter of days, they can die.”

The worst news comes from the North Atlantic, where the vast majority of species, including Atlantic cod, European and American plaice, and sole are declining. In this case, Britten says historically heavy fishing may also play a role. Large fish, able to produce the biggest, most robust eggs, are harvested from the water. At the same time, documented declines of phytoplankton made it much more difficult for those fish stocks to bounce back when they did reproduce, despite aggressive fishery management efforts, says Britten.

When the researchers looked at plankton and fish reproduction declines in individual ecosystems, the results varied. In the North Pacific — for example, the Gulf of Alaska — there were no significant declines. But in other regions of the world, like Australia and South America, it was clear that the lack of phytoplankton was the strongest driver in diminishing fish populations.

“When you averaged globally, there was a decline,” says Britten. “Decline in phytoplankton was a factor in all species. It was a consistent variable.”

And it’s directly linked to climate change: Change in ocean temperature affects the phytoplankton population, which is impacting fish stocks, he says.

Food sources for fish in their larval stage were also a focus of research published earlier this summer by Rebecca Asch, now a postdoctoral research associate at Princeton University. Asch studied data from 1951 to 2008 on 43 species of fish collected off the Southern California coast and found that many fish have changed the season when they spawn. When fish spawned too early or too late in the season, there can be less plankton available to them, shrinking their chance of survival. She calls it a “mismatch” between when the fish spawn and when seasonal plankton blooms.

Knowing just how vulnerable our fisheries are to potential climate change is on the radar of NOAA Fisheries. The agency has put together a Fish Stock Climate Vulnerability Assessment report expected to be released in early 2016. And like many things associated with climate change, there will be winners and losers.

Jon Hare is the oceanography branch chief for NOAA Fisheries’ Northeast Fisheries Science Center and a lead researcher on the agency’s assessment. He says they looked at 82 fish and invertebrate species in the Northeast. About half of the species, including Atlantic cod, were determined to be negatively impacted by climate change in the Northeast U.S. Approximately 20 percent of the species are likely to be positively impacted — like the Atlantic croaker. The remainder species were considered neutral.

Similar assessments are underway in the California Current and the Bering Sea, and eventually in all of the nation’s large marine ecosystems.

“This is where the idea of ecosystem-based management comes in. It’s not only fishing that is impacting these resources,” says Hare. “We need to take a more holistic view of these resources and include that in our management.”

Britten says the fact that productivity of a fishery can change should be an eye-opener for fisheries management.

“It’s no longer just pull back on fishing and watch the stock rebound. It’s also a question of monitoring and understanding the ability of stocks to rebound, and that’s what we demonstrated in this study. The rebound potential is affected as well,” says Britten.


Original story:  www.npr.org/ Copyright 2015 NPR.

Sep 2 2015

Climate change will irreversibly force key ocean bacteria into overdrive

 Scientists demonstrate that a key organism in the ocean’s food web will start reproducing at high speed as carbon dioxide levels rise, with no way to stop when nutrients become scarce
Trichodesmium thiebautii is a cyanobacterium, or blue-green alga, that forms colonies of cells.
Trichodesmium is one of the few organisms in the ocean that can “fix” atmospheric nitrogen gas. (Photo/Fish and Wildlife Research Institute)

Imagine being in a car with the gas pedal stuck to the floor, heading toward a cliff’s edge. Metaphorically speaking, that’s what climate change will do to the key group of ocean bacteria known as Trichodesmium, scientists have discovered.

Trichodesmium (called “Tricho” for short by researchers) is one of the few organisms in the ocean that can “fix” atmospheric nitrogen gas, making it available to other organisms. It is crucial because all life — from algae to whales — needs nitrogen to grow.

A new study from USC and the Massachusetts-based Woods Hole Oceanographic Institution (WHOI) shows that changing conditions due to climate change could send Tricho into overdrive with no way to stop — reproducing faster and generating lots more nitrogen. Without the ability to slow down, however, Tricho has the potential to gobble up all its available resources, which could trigger die-offs of the microorganism and the higher organisms that depend on it.

Amped-up bacteria

By breeding hundreds of generations of the bacteria over the course of nearly five years in high-carbon dioxide ocean conditions predicted for the year 2100, researchers found that increased ocean acidification evolved Tricho to work harder, producing 50 percent more nitrogen, and grow faster.

The problem is that these amped-up bacteria can’t turn it off even when they are placed in conditions with less carbon dioxide. Further, the adaptation can’t be reversed over time — something not seen before by evolutionary biologists, and worrisome to marine biologists, according to David Hutchins, lead author of the study.

“Losing the ability to regulate your growth rate is not a healthy thing,” said Hutchins, professor at the USC Dornsife College of Letters, Arts and Sciences. “The last thing you want is to be stuck with these high growth rates when there aren’t enough nutrients to go around. It’s a losing strategy in the struggle to survive.”

Tricho needs phosphorous and iron, which also exist in the ocean in limited supply. With no way to regulate its growth, the turbo-boosted Tricho could burn through all of its available nutrients too quickly and abruptly die off, which would be catastrophic for all other life forms in the ocean that need the nitrogen it would have produced to survive.

Some models predict that increasing ocean acidification will exacerbate the problem of nutrient scarcity by increasing stratification of the ocean — locking key nutrients away from the organisms that need them to survive.

What the future may hold

Hutchins is collaborating with Eric bbb of USC Dornsife and Mak Saito of WHOI to gain a better understanding of what the future ocean will look like, as it continues to be shaped by climate change. They were shocked by the discovery of an evolutionary change that appears to be permanent — something Hutchins described as “unprecedented.”

Tricho has been studied for ages. Nobody expected that it could do something so bizarre,” he said. “The evolutionary biologists are interested in it just to study this as a basic evolutionary principle.”

The team is now studying the DNA of Tricho to try to find out how and why the irreversible evolution occurs. Earlier this year, research led by Webb found that the organism’s DNA inexplicably contains elements that are usually only seen in higher life forms.

“Our results in this and the aforementioned study are truly surprising. Furthermore, they are giving us an improved view of how global climate change will impact Trichodesmium and the vital supplies of new nitrogen it provides to the rest of the marine food web in the future.” Webb said.

The research appears in Nature Communications on Sept. 1.

Hutchins, Webb and Saito collaborated with Nathan Walworth, Jasmine Gale and Fei-Xue Fu of USC; and Dawn Moran and Matthew McIlvin of WHOI. The work was funded by the National Science Foundation (grants OCE 1260490, OCE 1143760, OCE 1260233 and OCE OA 1220484); and the G.B. Moore Foundation (grants 3782 and 3934).


Read the original post: http://news.usc.edu

Aug 16 2015

5 Things We Learned From the ‘Point of No Return’ Climate Solutions AMA

Journalist Eric Holthaus and ten climate experts answered readers’ questions about how to combat climate change

Climate Change
The climate experts agreed governments must act to adequately address climate change’s effects on humans and other species. Ullstein Bild/Getty

 

Eric Holthaus’s recent Rolling Stone article, “The Point of No Return: Climate Change Nightmares Are Already Here,” has clearly struck a chord, reaching millions of readers and advancing the conversation about the disastrous effects of our warming planet.

One of the most common things people have asked after reading the piece is, “What can I do to help?” So on Thursday afternoon, Holthaus, along with ten climate experts, participated in a Reddit AMA to answer readers’ questions about climate change solutions.

Below are some of the things we learned.

1. Climate experts aren’t all doom and gloom; they’re happy to offer solutions for “average” people.
“Teach your children to be mindful of what they do. That waste causes problems. That they live in the context of a big world but that the world is made up of individual actions,” said marine ecologist Dr. Carl Safina.

“I would also add that ‘awareness’ is a key step forward. Talk about these issues with friends and families,” said Kansas State University grasslands ecologist Dr. Jesse Nippert, adding, “Engagement with others also has more relevance when it’s local – notice/record ‘small things’ in your community like changes in plant phenology (first flower, leaf drop), first freeze/thaw dates, rainfall amounts, etc….[C]itizen science has been a HUGE movement and source of invaluable data recording climate change.”

Eat less meat. Choose low carbon transportation (basically anything but flying or driving in a car by yourself). Talk to your friends & family about [climate change],” added Holthaus.

2. Some members of the public wish scientists would engage in more direct climate activism – and scientists have fascinating thoughts about that.
“I am a believer that we all have things to contribute, and we do not all have to do the same things to be effective,” said Dr. Simone Alin, supervisory oceanographer at the NOAA Pacific Marine Environmental Laboratory. “I am glad people are marching in the streets to show how many people understand the problem and demand change. On the other hand, as a federal scientist, I have played a role in planning and implementing our regional, national, and international ocean acidification monitoring systems (with many, many great partners, from the policy world, academia, other gov’t agencies, tribal nations, industry, NGOs, etc.). In this capacity, others in my organization/field and I have had the opportunity to present our scientific findings to all of the above partners, all the way up to Congress, which has resulted in many positive outcomes.”

“I think we benefit more from mutually supporting each other and realizing we can be partners at the same table than from suggesting others aren’t doing enough because they are working through other channels,” she said.

3. The experts agree that modifying individual habits won’t be enough to combat climate change – we need to see big changes at the government level too.
“We need both, to show our elected leaders we have skin in the game, but we need to demand that they take actions at the scale of their power,” said J. Drake Hamilton, senior policy director at Fresh Energy. “I have heard Congressmen crow about switching a few light bulbs — they need to sign into law comprehensive, market-based systems that put a limit/price on carbon pollution and internalize those external costs of climate.”

“The problem is too huge for the citizens to be making bottom-up changes; it is almost an imperative from the state/country to be leading the way,” said Dr. Nina Bednarsek, an ocean acidification scientist at the University of Washington and NOAA Pacific Marine Environmental Laboratory. “Having said that, citizens’ responsibility is to try to make these changes on the local and state level by writing to their politicians and demanding more green approaches.”

4. Climate scientists have a sense of humor.
When asked if the AMA participants had any “crazy ideas [for] promoting climate change,” Dr. Alin responded, “A cooking show from the future. Premise: now that we only have jellyfish in our oceans, what tasty treats can we make out of them anyway?”

She added, “More seriously, I have thought for a long time that we need some sort of mechanism/agency/organization to quantify the overall footprint of human actions on the environment….All of our consumption choices and actions (flying, driving) have a total environmental footprint, but I’m not aware of anyone or any organization that calculates this….Ideally it should be an international entity (UN I suppose) that would create evidence-based metrics to support the sustainability of various lifestyle choices and such. I say this in part as a consumer – it can be mind-boggling enough to go to the supermarket and pick out a cereal in our world of needlessly plentiful choices – how’s a person to make important decisions about bigger consumption choices?”

5. There is hope. Maybe.
Asked if climate change is reversible, Dr. Bill Peterson, an oceanographer at the NOAA Northwest Fisheries Science Center, had this to say: “We can only hope.”

Holthaus followed up on Dr. Peterson’s response, saying, “This is actually a pretty good answer from a scientific basis. There’s no way of knowing if future technology will be able to reliably and affordably remove excess carbon dioxide from the atmosphere, so the best current approach is not to put it there in the first place.”


Read the original post: www.rollingstone.com

Aug 6 2015

The Point of No Return: Climate Change Nightmares Are Already Here

Walruses

Walruses, like these in Alaska, are being forced ashore in record numbers. Corey Accardo/NOAA/AP

The worst predicted impacts of climate change are starting to happen — and much faster than climate scientists expected

Historians may look to 2015 as the year when shit really started hitting the fan. Some snapshots: In just the past few months, record-setting heat waves in Pakistan and India each killed more than 1,000 people. In Washington state’s Olympic National Park, the rainforest caught fire for the first time in living memory. London reached 98 degrees Fahrenheit during the hottest July day ever recorded in the U.K.; The Guardian briefly had to pause its live blog of the heat wave because its computer servers overheated. In California, suffering from its worst drought in a millennium, a 50-acre brush fire swelled seventyfold in a matter of hours, jumping across the I-15 freeway during rush-hour traffic. Then, a few days later, the region was pounded by intense, virtually unheard-of summer rains. Puerto Rico is under its strictest water rationing in history as a monster El Niño forms in the tropical Pacific Ocean, shifting weather patterns worldwide.

On July 20th, James Hansen, the former NASA climatologist who brought climate change to the public’s attention in the summer of 1988, issued a bombshell: He and a team of climate scientists had identified a newly important feedback mechanism off the coast of Antarctica that suggests mean sea levels could rise 10 times faster than previously predicted: 10 feet by 2065. The authors included this chilling warning: If emissions aren’t cut, “We conclude that multi-meter sea-level rise would become practically unavoidable. Social disruption and economic consequences of such large sea-level rise could be devastating. It is not difficult to imagine that conflicts arising from forced migrations and economic collapse might make the planet ungovernable, threatening the fabric of civilization.”

Eric Rignot, a climate scientist at NASA and the University of California-Irvine and a co-author on Hansen’s study, said their new research doesn’t necessarily change the worst-case scenario on sea-level rise, it just makes it much more pressing to think about and discuss, especially among world leaders. In particular, says Rignot, the new research shows a two-degree Celsius rise in global temperature — the previously agreed upon “safe” level of climate change — “would be a catastrophe for sea-level rise.”

Hansen’s new study also shows how complicated and unpredictable climate change can be. Even as global ocean temperatures rise to their highest levels in recorded history, some parts of the ocean, near where ice is melting exceptionally fast, are actually cooling, slowing ocean circulation currents and sending weather patterns into a frenzy. Sure enough, a persistently cold patch of ocean is starting to show up just south of Greenland, exactly where previous experimental predictions of a sudden surge of freshwater from melting ice expected it to be. Michael Mann, another prominent climate scientist, recently said of the unexpectedly sudden Atlantic slowdown, “This is yet another example of where observations suggest that climate model predictions may be too conservative when it comes to the pace at which certain aspects of climate change are proceeding.”

Since storm systems and jet streams in the United States and Europe partially draw their energy from the difference in ocean temperatures, the implication of one patch of ocean cooling while the rest of the ocean warms is profound. Storms will get stronger, and sea-level rise will accelerate. Scientists like Hansen only expect extreme weather to get worse in the years to come, though Mann said it was still “unclear” whether recent severe winters on the East Coast are connected to the phenomenon.

And yet, these aren’t even the most disturbing changes happening to the Earth’s biosphere that climate scientists are discovering this year. For that, you have to look not at the rising sea levels but to what is actually happening within the oceans themselves.

Water temperatures this year in the North Pacific have never been this high for this long over such a large area — and it is already having a profound effect on marine life

Eighty-year-old Roger Thomas runs whale-watching trips out of San Francisco. On an excursion earlier this year, Thomas spotted 25 humpbacks and three blue whales. During a survey on July 4th, federal officials spotted 115 whales in a single hour near the Farallon Islands — enough to issue a boating warning. Humpbacks are occasionally seen offshore in California, but rarely so close to the coast or in such numbers. Why are they coming so close to shore? Exceptionally warm water has concentrated the krill and anchovies they feed on into a narrow band of relatively cool coastal water. The whales are having a heyday. “It’s unbelievable,” Thomas told a local paper. “Whales are all over the place.”

Last fall, in northern Alaska, in the same part of the Arctic where Shell is planning to drill for oil, federal scientists discovered 35,000 walruses congregating on a single beach. It was the largest-ever documented “haul out” of walruses, and a sign that sea ice, their favored habitat, is becoming harder and harder to find.

Marine life is moving north, adapting in real time to the warming ocean. Great white sharks have been sighted breeding near Monterey Bay, California, the farthest north that’s ever been known to occur. A blue marlin was caught last summer near Catalina Island — 1,000 miles north of its typical range. Across California, there have been sightings of non-native animals moving north, such as Mexican red crabs.

Salmon

Salmon on the brink of dying out. Michael Quinton/Newscom

No species may be as uniquely endangered as the one most associated with the Pacific Northwest, the salmon. Every two weeks, Bill Peterson, an oceanographer and senior scientist at the National Oceanic and Atmospheric Administration’s Northwest Fisheries Science Center in Oregon, takes to the sea to collect data he uses to forecast the return of salmon. What he’s been seeing this year is deeply troubling.Salmon are crucial to their coastal ecosystem like perhaps few other species on the planet. A significant portion of the nitrogen in West Coast forests has been traced back to salmon, which can travel hundreds of miles upstream to lay their eggs. The largest trees on Earth simply wouldn’t exist without salmon.But their situation is precarious. This year, officials in California are bringing salmon downstream in convoys of trucks, because river levels are too low and the temperatures too warm for them to have a reasonable chance of surviving. One species, the winter-run Chinook salmon, is at a particularly increased risk of decline in the next few years, should the warm water persist offshore.”You talk to fishermen, and they all say: ‘We’ve never seen anything like this before,’ ” says Peterson. “So when you have no experience with something like this, it gets like, ‘What the hell’s going on?’ ”

Atmospheric scientists increasingly believe that the exceptionally warm waters over the past months are the early indications of a phase shift in the Pacific Decadal Oscillation, a cyclical warming of the North Pacific that happens a few times each century. Positive phases of the PDO have been known to last for 15 to 20 years, during which global warming can increase at double the rate as during negative phases of the PDO. It also makes big El Niños, like this year’s, more likely. The nature of PDO phase shifts is unpredictable — climate scientists simply haven’t yet figured out precisely what’s behind them and why they happen when they do. It’s not a permanent change — the ocean’s temperature will likely drop from these record highs, at least temporarily, some time over the next few years — but the impact on marine species will be lasting, and scientists have pointed to the PDO as a global-warming preview.

“The climate [change] models predict this gentle, slow increase in temperature,” says Peterson, “but the main problem we’ve had for the last few years is the variability is so high. As scientists, we can’t keep up with it, and neither can the animals.” Peterson likens it to a boxer getting pummeled round after round: “At some point, you knock them down, and the fight is over.”

 

India

Pavement-melting heat waves in India. Harish Tyagi/EPA/Corbis

Attendant with this weird wildlife behavior is a stunning drop in the number of plankton — the basis of the ocean’s food chain. In July, another major study concluded that acidifying oceans are likely to have a “quite traumatic” impact on plankton diversity, with some species dying out while others flourish. As the oceans absorb carbon dioxide from the atmosphere, it’s converted into carbonic acid — and the pH of seawater declines. According to lead author Stephanie Dutkiewicz of MIT, that trend means “the whole food chain is going to be different.”

The Hansen study may have gotten more attention, but the Dutkiewicz study, and others like it, could have even more dire implications for our future. The rapid changes Dutkiewicz and her colleagues are observing have shocked some of their fellow scientists into thinking that yes, actually, we’re heading toward the worst-case scenario. Unlike a prediction of massive sea-level rise just decades away, the warming and acidifying oceans represent a problem that seems to have kick-started a mass extinction on the same time scale.

Jacquelyn Gill is a paleoecologist at the University of Maine. She knows a lot about extinction, and her work is more relevant than ever. Essentially, she’s trying to save the species that are alive right now by learning more about what killed off the ones that aren’t. The ancient data she studies shows “really compelling evidence that there can be events of abrupt climate change that can happen well within human life spans. We’re talking less than a decade.”

For the past year or two, a persistent change in winds over the North Pacific has given rise to what meteorologists and oceanographers are calling “the blob” — a highly anomalous patch of warm water between Hawaii, Alaska and Baja California that’s thrown the marine ecosystem into a tailspin. Amid warmer temperatures, plankton numbers have plummeted, and the myriad species that depend on them have migrated or seen their own numbers dwindle.

Significant northward surges of warm water have happened before, even frequently. El Niño, for example, does this on a predictable basis. But what’s happening this year appears to be something new. Some climate scientists think that the wind shift is linked to the rapid decline in Arctic sea ice over the past few years, which separate research has shown makes weather patterns more likely to get stuck.

A similar shift in the behavior of the jet stream has also contributed to the California drought and severe polar vortex winters in the Northeast over the past two years. An amplified jet-stream pattern has produced an unusual doldrum off the West Coast that’s persisted for most of the past 18 months. Daniel Swain, a Stanford University meteorologist, has called it the “Ridiculously Resilient Ridge” — weather patterns just aren’t supposed to last this long.

What’s increasingly uncontroversial among scientists is that in many ecosystems, the impacts of the current off-the-charts temperatures in the North Pacific will linger for years, or longer. The largest ocean on Earth, the Pacific is exhibiting cyclical variability to greater extremes than other ocean basins. While the North Pacific is currently the most dramatic area of change in the world’s oceans, it’s not alone: Globally, 2014 was a record-setting year for ocean temperatures, and 2015 is on pace to beat it soundly, boosted by the El Niño in the Pacific. Six percent of the world’s reefs could disappear before the end of the decade, perhaps permanently, thanks to warming waters.

Since warmer oceans expand in volume, it’s also leading to a surge in sea-level rise. One recent study showed a slowdown in Atlantic Ocean currents, perhaps linked to glacial melt from Greenland, that caused a four-inch rise in sea levels along the Northeast coast in just two years, from 2009 to 2010. To be sure, it seems like this sudden and unpredicted surge was only temporary, but scientists who studied the surge estimated it to be a 1-in-850-year event, and it’s been blamed on accelerated beach erosion “almost as significant as some hurricane events.”

Turkey Biblical floods in Turkey. Ali Atmaca/Anadolu Agency/Getty

Possibly worse than rising ocean temperatures is the acidification of the waters. Acidification has a direct effect on mollusks and other marine animals with hard outer bodies: A striking study last year showed that, along the West Coast, the shells of tiny snails are already dissolving, with as-yet-unknown consequences on the ecosystem. One of the study’s authors, Nina Bednaršek, told Science magazine that the snails’ shells, pitted by the acidifying ocean, resembled “cauliflower” or “sandpaper.” A similarly striking study by more than a dozen of the world’s top ocean scientists this July said that the current pace of increasing carbon emissions would force an “effectively irreversible” change on ocean ecosystems during this century. In as little as a decade, the study suggested, chemical changes will rise significantly above background levels in nearly half of the world’s oceans.

“I used to think it was kind of hard to make things in the ocean go extinct,” James Barry of the Monterey Bay Aquarium Research Institute in California told the Seattle Times in 2013. “But this change we’re seeing is happening so fast it’s almost instantaneous.”

Thanks to the pressure we’re putting on the planet’s ecosystem — warming, acidification and good old-fashioned pollution — the oceans are set up for several decades of rapid change. Here’s what could happen next.

The combination of excessive nutrients from agricultural runoff, abnormal wind patterns and the warming oceans is already creating seasonal dead zones in coastal regions when algae blooms suck up most of the available oxygen. The appearance of low-oxygen regions has doubled in frequency every 10 years since 1960 and should continue to grow over the coming decades at an even greater rate.

So far, dead zones have remained mostly close to the coasts, but in the 21st century, deep-ocean dead zones could become common. These low-oxygen regions could gradually expand in size — potentially thousands of miles across — which would force fish, whales, pretty much everything upward. If this were to occur, large sections of the temperate deep oceans would suffer should the oxygen-free layer grow so pronounced that it stratifies, pushing surface ocean warming into overdrive and hindering upwelling of cooler, nutrient-rich deeper water.

Enhanced evaporation from the warmer oceans will create heavier downpours, perhaps destabilizing the root systems of forests, and accelerated runoff will pour more excess nutrients into coastal areas, further enhancing dead zones. In the past year, downpours have broken records in Long Island, Phoenix, Detroit, Baltimore, Houston and Pensacola, Florida.

Evidence for the above scenario comes in large part from our best understanding of what happened 250 million years ago, during the “Great Dying,” when more than 90 percent of all oceanic species perished after a pulse of carbon dioxide and methane from land-based sources began a period of profound climate change. The conditions that triggered “Great Dying” took hundreds of thousands of years to develop. But humans have been emitting carbon dioxide at a much quicker rate, so the current mass extinction only took 100 years or so to kick-start.

With all these stressors working against it, a hypoxic feedback loop could wind up destroying some of the oceans’ most species-rich ecosystems within our lifetime. A recent study by Sarah Moffitt of the University of California-Davis said it could take the ocean thousands of years to recover. “Looking forward for my kid, people in the future are not going to have the same ocean that I have today,” Moffitt said.

As you might expect, having tickets to the front row of a global environmental catastrophe is taking an increasingly emotional toll on scientists, and in some cases pushing them toward advocacy. Of the two dozen or so scientists I interviewed for this piece, virtually all drifted into apocalyptic language at some point.

For Simone Alin, an oceanographer focusing on ocean acidification at NOAA’s Pacific Marine Environmental Laboratory in Seattle, the changes she’s seeing hit close to home. The Puget Sound is a natural laboratory for the coming decades of rapid change because its waters are naturally more acidified than most of the world’s marine ecosystems.

The local oyster industry here is already seeing serious impacts from acidifying waters and is going to great lengths to avoid a total collapse. Alin calls oysters, which are non-native, the canary in the coal mine for the Puget Sound: “A canary is also not native to a coal mine, but that doesn’t mean it’s not a good indicator of change.”

Though she works on fundamental oceanic changes every day, the Dutkiewicz study on the impending large-scale changes to plankton caught her off-guard: “This was alarming to me because if the basis of the food web changes, then . . . everything could change, right?”

Alin’s frank discussion of the looming oceanic apocalypse is perhaps a product of studying unfathomable change every day. But four years ago, the birth of her twins “heightened the whole issue,” she says. “I was worried enough about these problems before having kids that I maybe wondered whether it was a good idea. Now, it just makes me feel crushed.”

Katharine Hayhoe
Katharine Hayhoe speaks about climate change to students and faculty at Wayland Baptist University in 2011. Geoffrey McAllister/Chicago Tribune/MCT/Getty

 

Katharine Hayhoe, a climate scientist and evangelical Christian, moved from Canada to Texas with her husband, a pastor, precisely because of its vulnerability to climate change. There, she engages with the evangelical community on science — almost as a missionary would. But she’s already planning her exit strategy: “If we continue on our current pathway, Canada will be home for us long term. But the majority of people don’t have an exit strategy. . . . So that’s who I’m here trying to help.”

James Hansen, the dean of climate scientists, retired from NASA in 2013 to become a climate activist. But for all the gloom of the report he just put his name to, Hansen is actually somewhat hopeful. That’s because he knows that climate change has a straightforward solution: End fossil-fuel use as quickly as possible. If tomorrow, the leaders of the United States and China would agree to a sufficiently strong, coordinated carbon tax that’s also applied to imports, the rest of the world would have no choice but to sign up. This idea has already been pitched to Congress several times, with tepid bipartisan support. Even though a carbon tax is probably a long shot, for Hansen, even the slim possibility that bold action like this might happen is enough for him to devote the rest of his life to working to achieve it. On a conference call with reporters in July, Hansen said a potential joint U.S.-China carbon tax is more important than whatever happens at the United Nations climate talks in Paris.

One group Hansen is helping is Our Children’s Trust, a legal advocacy organization that’s filed a number of novel challenges on behalf of minors under the idea that climate change is a violation of intergenerational equity — children, the group argues, are lawfully entitled to inherit a healthy planet.

A separate challenge to U.S. law is being brought by a former EPA scientist arguing that carbon dioxide isn’t just a pollutant (which, under the Clean Air Act, can dissipate on its own), it’s also a toxic substance. In general, these substances have exceptionally long life spans in the environment, cause an unreasonable risk, and therefore require remediation. In this case, remediation may involve planting vast numbers of trees or restoring wetlands to bury excess carbon underground.

Even if these novel challenges succeed, it will take years before a bend in the curve is noticeable. But maybe that’s enough. When all feels lost, saving a few species will feel like a triumph.


Read the original article: www.rollingstone.com

Jul 17 2015

Warming of Oceans Due to Climate Change is Unstoppable, Say US Scientists

— Posted with permission of SEAFOODNEWS.COM. Please do not republish without their permission. —

Copyright © 2015 Seafoodnews.com

Seafood NewsYW5gmus_7UB6BswTlrlQl16gedNCZbAnq9GsLMJbi9TQXMtRr-31UN9JVN0X8WoHG1cxbbw32MNYluOaDq895pCQ07YA24YTAlUyNOw=s0-d-e1-ft

The warming of the oceans due to climate change is now unstoppable after record temperatures last year, bringing additional sea-level rise, and raising the risks of severe storms, US government climate scientists said on Thursday.

The annual State of the Climate in 2014 report, based on research from 413 scientists from 58 countries, found record warming on the surface and upper levels of the oceans, especially in the North Pacific, in line with earlier findings of 2014 as the hottest year on record.

Global sea-level also reached a record high, with the expansion of those warming waters, keeping pace with the 3.2 ± 0.4 mm per year trend in sea level growth over the past two decades, the report said.

Scientists said the consequences of those warmer ocean temperatures would be felt for centuries to come – even if there were immediate efforts to cut the carbon emissions fuelling changes in the oceans.

“I think of it more like a fly wheel or a freight train. It takes a big push to get it going but it is moving now and will contiue to move long after we continue to pushing it,” Greg Johnson, an oceanographer at Noaa’s Pacific Marine Environmental Laboratory, told a conference call with reporters.

“Even if we were to freeze greenhouse gases at current levels, the sea would actually continue to warm for centuries and millennia, and as they continue to warm and expand the sea levels will continue to rise,” Johnson said.

On the west coast of the US, freakishly warm temperatures in the Pacific – 4 or 5F above normal – were already producing warmer winters, as well as worsening drought conditions by melting the snowpack, he said.

The extra heat in the oceans was also contributing to more intense storms, Tom Karl, director of Noaa’s National Centers for Environmental Information, said.

The report underlined 2014 as a banner year for the climate, setting record or near record levels for temperature extremes, and loss of glaciers and sea ice, and reinforcing decades-old pattern to changes to the climate system.

Four independent data sets confirmed 2014 as the hottest year on record, with much of that heat driven by the warming of the oceans.

Globally 90% of the excess heat caused by the rise in greenhouse gas emissions is absorbed by the oceans.

More than 20 countries in Europe set new heat records, with Africa, Asia and Australia also experiencing near-record heat. The east coast of North America was the only region to experience cooler than average conditions.

Alaska experienced temperatures 18F warmer than average. Spring break-up came to the Arctic 20-30 days earlier than the 20th century average.

“The prognosis is to expect a continuation of what we have seen,” Karl said.


Subscribe to Seafoodnews.com